Extra lemmas about intervals #
This file contains lemmas about intervals that cannot be included into Order.Interval.Set.Basic
because this would create an import cycle. Namely, lemmas in this file can use definitions
from Data.Set.Lattice, including Disjoint.
We consider various intersections and unions of half infinite intervals.
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Set.eq_of_Ico_disjoint
{α : Type v}
[LinearOrder α]
{x₁ x₂ y₁ y₂ : α}
(h : Disjoint (Ico x₁ x₂) (Ico y₁ y₂))
(hx : x₁ < x₂)
(h2 : x₂ ∈ Ico y₁ y₂)
:
If two half-open intervals are disjoint and the endpoint of one lies in the other, then it must be equal to the endpoint of the other.
@[simp]
theorem
Set.iUnion_Ico_eq_Iio_self_iff
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{f : ι → α}
{a : α}
:
theorem
IsGLB.iUnion_Ioi_eq
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{a : α}
{f : ι → α}
(h : IsGLB (Set.range f) a)
:
theorem
IsLUB.iUnion_Iio_eq
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{a : α}
{f : ι → α}
(h : IsLUB (Set.range f) a)
:
theorem
IsGLB.biUnion_Ici_eq_Ioi
{α : Type v}
[LinearOrder α]
{s : Set α}
{a : α}
(a_glb : IsGLB s a)
(a_notMem : a ∉ s)
:
theorem
IsGLB.biUnion_Ici_eq_Ici
{α : Type v}
[LinearOrder α]
{s : Set α}
{a : α}
(a_glb : IsGLB s a)
(a_mem : a ∈ s)
:
theorem
IsLUB.biUnion_Iic_eq_Iio
{α : Type v}
[LinearOrder α]
{s : Set α}
{a : α}
(a_lub : IsLUB s a)
(a_notMem : a ∉ s)
:
theorem
IsLUB.biUnion_Iic_eq_Iic
{α : Type v}
[LinearOrder α]
{s : Set α}
{a : α}
(a_lub : IsLUB s a)
(a_mem : a ∈ s)
:
theorem
iUnion_Ici_eq_Ioi_iInf
{ι : Sort u}
{R : Type u_1}
[CompleteLinearOrder R]
{f : ι → R}
(no_least_elem : ⨅ (i : ι), f i ∉ Set.range f)
:
theorem
iUnion_Iic_eq_Iio_iSup
{ι : Sort u}
{R : Type u_1}
[CompleteLinearOrder R]
{f : ι → R}
(no_greatest_elem : ⨆ (i : ι), f i ∉ Set.range f)
:
theorem
iUnion_Ici_eq_Ici_iInf
{ι : Sort u}
{R : Type u_1}
[CompleteLinearOrder R]
{f : ι → R}
(has_least_elem : ⨅ (i : ι), f i ∈ Set.range f)
:
theorem
iUnion_Iic_eq_Iic_iSup
{ι : Sort u}
{R : Type u_1}
[CompleteLinearOrder R]
{f : ι → R}
(has_greatest_elem : ⨆ (i : ι), f i ∈ Set.range f)
: