noncomputable def
Module.Basis.mkFinCons
{R : Type u_3}
{M : Type u_5}
[Ring R]
[AddCommGroup M]
[Module R M]
{n : ℕ}
{N : Submodule R M}
(y : M)
(b : Basis (Fin n) R ↥N)
(hli : ∀ (c : R), ∀ x ∈ N, c • y + x = 0 → c = 0)
(hsp : ∀ (z : M), ∃ (c : R), z + c • y ∈ N)
:
Let b be a basis for a submodule N of M. If y : M is linear independent of N
and y and N together span the whole of M, then there is a basis for M
whose basis vectors are given by Fin.cons y b.
Equations
- Module.Basis.mkFinCons y b hli hsp = Module.Basis.mk ⋯ ⋯
Instances For
noncomputable def
Module.Basis.mkFinConsOfLE
{R : Type u_3}
{M : Type u_5}
[Ring R]
[AddCommGroup M]
[Module R M]
{n : ℕ}
{N O : Submodule R M}
(y : M)
(yO : y ∈ O)
(b : Basis (Fin n) R ↥N)
(hNO : N ≤ O)
(hli : ∀ (c : R), ∀ x ∈ N, c • y + x = 0 → c = 0)
(hsp : ∀ z ∈ O, ∃ (c : R), z + c • y ∈ N)
:
Let b be a basis for a submodule N ≤ O. If y ∈ O is linear independent of N
and y and N together span the whole of O, then there is a basis for O
whose basis vectors are given by Fin.cons y b.
Equations
- Module.Basis.mkFinConsOfLE y yO b hNO hli hsp = Module.Basis.mkFinCons ⟨y, yO⟩ (b.map (Submodule.comapSubtypeEquivOfLe hNO).symm) ⋯ ⋯
Instances For
The basis of R × R given by the two vectors (1, 0) and (0, 1).
Equations
Instances For
@[simp]
@[simp]